👤

Answer :

Given:

The equation is

[tex]\left(\dfrac{3}{5}\right)^x\left(\dfrac{5}{3}\right)^{2x}=\dfrac{125}{27}[/tex]

To find:

The value of x.

Solution:

We have,

[tex]\left(\dfrac{3}{5}\right)^x\left(\dfrac{5}{3}\right)^{2x}=\dfrac{125}{27}[/tex]

[tex]\left(\dfrac{5}{3}\right)^{-x}\left(\dfrac{5}{3}\right)^{2x}=\dfrac{5\times 5\times 5}{3\times 3\times 3}[/tex]      [tex][\because \left(\dfrac{a}{b}\right)^{-m}=\left(\dfrac{b}{a}\right)^{m}][/tex]

[tex]\left(\dfrac{5}{3}\right)^{-x+2x}=\dfrac{5^3}{3^3}[/tex]          [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]\left(\dfrac{5}{3}\right)^{x}=\left(\dfrac{5}{3}\right)^{3}[/tex]

On comparing the exponents, we get

[tex]x=3[/tex]

Therefore, the value of x is 3.