Answer :
Given:
The expressions are
[tex]-6a^2b^{-1}[/tex]
[tex]\dfrac{5}{y^{-3}}[/tex]
To find:
The simplified form of each expression.
Solution:
We have,
[tex]-6a^2b^{-1}[/tex]
[tex]=-6a^2(\dfrac{1}{b})[/tex] [tex][\because x^{-n}=\dfrac{1}{x^n}][/tex]
[tex]=-\dfrac{6a^2}{b}[/tex]
Therefore, the simplified form of [tex]-6a^2b^{-1}[/tex] is [tex]-\dfrac{6a^2}{b}[/tex].
We have,
[tex]\dfrac{5}{y^{-3}}[/tex]
[tex]=\dfrac{5}{\dfrac{1}{y^3}}[/tex] [tex][\because x^{-n}=\dfrac{1}{x^n}][/tex]
[tex]=5\times \dfrac{y^3}{1}[/tex]
[tex]=5y^3[/tex]
Therefore, the simplified form of [tex]\dfrac{5}{y^{-3}}[/tex] is [tex]5y^3[/tex].