👤

Answer :

Given:

The expressions are

[tex]-6a^2b^{-1}[/tex]

[tex]\dfrac{5}{y^{-3}}[/tex]

To find:

The simplified form of each expression.

Solution:

We have,

[tex]-6a^2b^{-1}[/tex]

[tex]=-6a^2(\dfrac{1}{b})[/tex]      [tex][\because x^{-n}=\dfrac{1}{x^n}][/tex]

[tex]=-\dfrac{6a^2}{b}[/tex]

Therefore, the simplified form of [tex]-6a^2b^{-1}[/tex] is [tex]-\dfrac{6a^2}{b}[/tex].

We have,

[tex]\dfrac{5}{y^{-3}}[/tex]

[tex]=\dfrac{5}{\dfrac{1}{y^3}}[/tex]      [tex][\because x^{-n}=\dfrac{1}{x^n}][/tex]

[tex]=5\times \dfrac{y^3}{1}[/tex]

[tex]=5y^3[/tex]

Therefore, the simplified form of [tex]\dfrac{5}{y^{-3}}[/tex] is [tex]5y^3[/tex].