👤

Plz help with full process
[tex] \frac{(a - b)^{2} - {c}^{2} }{{a}^{2} - {(b+ c)}^{2} } + \frac{(b - c)^{2} - {a}^{2} }{{b}^{2} - {(c+ a)}^{2} } + \frac{(c - a)^{2} - {b}^{2} }{{c}^{2} - {(a+ b)}^{2} }[/tex]

Answer :

Answer:

[tex]\displaystyle \frac{(a - b)^{2} - {c}^{2} }{{a}^{2} - {(b+ c)}^{2} } + \frac{(b - c)^{2} - {a}^{2} }{{b}^{2} - {(c+ a)}^{2} } + \frac{(c - a)^{2} - {b}^{2} }{{c}^{2} - {(a+ b)}^{2} }=1[/tex]

Step-by-step explanation:

Algebra Simplifying

We are given the expression:

[tex]\displaystyle T=\frac{(a - b)^{2} - {c}^{2} }{{a}^{2} - {(b+ c)}^{2} } + \frac{(b - c)^{2} - {a}^{2} }{{b}^{2} - {(c+ a)}^{2} } + \frac{(c - a)^{2} - {b}^{2} }{{c}^{2} - {(a+ b)}^{2} }[/tex]

We need to repeatedly use the following identity:

[tex](a^2-b^2)=(a-b)(a+b)[/tex]

For example, the first numerator has a difference of squares thus we factor as:

[tex](a - b)^{2} - {c}^{2} =(a-b-c)(a-b+c)[/tex]

The first denominator can be factored also:

[tex]{a}^{2} - {(b+ c)}^{2} = (a-b-c)(a+b+c)[/tex]

Applying the same procedure to all the expressions:

[tex]\displaystyle T=\frac{(a - b- c)(a-b+c) }{a-b-c)(a+b+c) } + \frac{(b - c - a)(b-c+a) }{(b-c-a)(b+c+a) } + \frac{(c - a-b)(c-a+b) }{(c-a-b)(c+a+b)}[/tex]

Simplifying all the fractions:

[tex]\displaystyle T=\frac{a - b- c}{a+b+c} + \frac{b-c+a}{b+c+a } + \frac{c-a+b }{c+a+b}[/tex]

Since all the denominators are equal:

[tex]\displaystyle T=\frac{a - b+ c+b-c+a+c-a+b}{a+b+c}[/tex]

Simplifying:

[tex]\displaystyle T=\frac{a +c+b}{a+b+c}[/tex]

Simplifying again:

T = 1

Thus:

[tex]\boxed{\displaystyle \frac{(a - b)^{2} - {c}^{2} }{{a}^{2} - {(b+ c)}^{2} } + \frac{(b - c)^{2} - {a}^{2} }{{b}^{2} - {(c+ a)}^{2} } + \frac{(c - a)^{2} - {b}^{2} }{{c}^{2} - {(a+ b)}^{2} }=1}[/tex]

Answer:

Siblings r annoying

Step-by-step explanation: