Answer :
Answer:
work energy equation
[tex]w.d(external)= \delta \: k.e+ \: \: \ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: w.d(ressesive)[/tex]
Explanation:
first of all we have to find reaction force to find fr
[tex]fr = \mu \: mg \\ mg = reaction \: force(r) \\ f = ma \\ r + 40 \sin(22) - 150 = 0 \\ r = 150 - 40 \sin(22) [/tex]
then let's find friction
[tex]fr = \mu \: r \\ 0.2 \times (150 - 40 \sin(22) )[/tex]
then let's apply work energy principle...its on the 2nd picture
v = 2.3ms^-1

