Answer :
Answer:
[tex]-15x^5y^7[/tex]
Step-by-step explanation:
Given
[tex](-3xy^3)(5x^4y^4)[/tex]
Required
Express as [tex]Ax^my^n[/tex]
[tex](-3xy^3)(5x^4y^4)[/tex]
Expand each factor in both brackets
[tex](-3 * x * y^3) (5 * x^4 * y^4)[/tex]
Remove brackets
[tex]-3 * x * y^3*5 * x^4 * y^4[/tex]
Bring like factors together
[tex]-3 *5* x * x^4* y^3 * y^4[/tex]
[tex]-15* x * x^4* y^3 * y^4[/tex]
Apply law of indices
[tex]-15* x^{1+4}* y^{3+4[/tex]
[tex]-15* x^5* y^7[/tex]
[tex]-15x^5y^7[/tex]
Done
The expression equivalent to (-3xy^3)(5x^4y^4) in the form Ax^my^n [tex]\mathbf{=-15x^{5} y^{7}}[/tex]
Indices are algebraic expressions usually raised to a power of a given number or term.
Given that:
- (-3xy^3)(5x^4y^4)
To express the given indices in terms of Ax^my^n, we need to open the two brackets and multiply the corresponding variables carrying the same terms.
i.e.
[tex]\mathbf{=(-3xy^3)(5x^4y^4) }[/tex]
[tex]\mathbf{=((-3\times 5)x^{1 +4}) ( y)^{3+4}}[/tex]
[tex]\mathbf{=-15x^{5} y^{7}}[/tex]
Learn more about indices here:
https://brainly.com/question/20411226