Answer :
Answer:
108 degrees
Step-by-step explanation:
Given
Let the angles be A and B
[tex]A = 10x - 63[/tex]
[tex]B = 8x[/tex]
Required
Find the larger angle
If both angles form linear pair, then the following relationship exist:
[tex]A + B = 180[/tex]
Substitute values for A and B
[tex]10x - 63 + 8x = 180[/tex]
Collect Like Terms
[tex]10x + 8x = 180 + 63[/tex]
[tex]18x = 243[/tex]
Solve for x
[tex]x = \frac{243}{18}[/tex]
[tex]x = 13.5[/tex]
Substitute 13.5 for x in
[tex]A = 10x - 63[/tex]
[tex]B = 8x[/tex]
[tex]A= 10 * 13.5 - 63[/tex]
[tex]A= 135 - 63[/tex]
[tex]A= 72[/tex]
[tex]B = 8 * 13.5[/tex]
[tex]B = 108[/tex]
Hence, the larger angle measures 108