Answer :
Answer:
z(s) = - 2,15 We accept H₀
Step-by-step explanation:
Assume Normal Distribution.
Sample size n = 290
Sample mean μ = 7,6
Sample standard deviation s = 0,8
Level of significance 0,02 ( CI = 98 % )
population mean μ₀ = 7,5
α = 0,02 the valve could fail under and above the spec value ( 7,6 ) therefore we must develop a two-tail test
α/2 = 0,01
Hypothesis Test
Null hypothesis H₀ μ = μ₀
Alternative Hypothesis Hₐ μ ≠ μ₀
for α = 0,01 z(c) = - 2,3
To calculate z(s)
z(s) = ( μ - μ₀ ) / s/√n
z(s) = ( 7,5 - 7,6 ) /0,8/√290
z(s) = - 0,1 * 17 /0,8
z(s) = - 1,7 / 0,8
z(s) = - 2,15
Comparing z(s) and z(c)
- 2, 15 < - 2,3
|z(s)| < | z(c)|
Then z(s) is in the acceptance region. We don´t have evidence to reject H₀