Answer :
Answer:
[tex]-3, -2, -0.8, -\frac{1}{10} ,\frac{1}{2}, 0.8, 7[/tex]
Step-by-step explanation:
Given
[tex]7, -3, \frac{1}{2}, -0.8, 0.8, -\frac{1}{10}, -2[/tex]
Required
Order from least to greatest
[tex]7, -3, \frac{1}{2}, -0.8, 0.8, -\frac{1}{10}, -2[/tex]
Convert 1/2 and -1/10 to decimals
[tex]7, -3, 0.5, -0.8, 0.8, -0.1, -2[/tex]
Negative numbers are always the least of all numbers.
In the given list, the negative numbers are:
[tex]-3, -0.8, -0.1, -2[/tex]
The higher the magnitude of a negative number, the smaller it is.
--------------------------------------------------------------------------------------------
Take for instance: -7 and -8.
-8 has a magnitude of 8 and -7 has a magnitude of 7.
Because 8 > 7 (the magnitudes), then
-8 < -7
--------------------------------------------------------------------------------------------
Using the above analysis:
[tex]-3, -0.8, -0.1, -2[/tex] from least to greatest is:
[tex]-3, -2, -0.8, -0.1[/tex]
Considering the positive numbers:
[tex]7, 0.5, 0.8[/tex]
From least to greatest, it is:
[tex]0.5, 0.8, 7[/tex]
Merge the negative and the positive numbers:
[tex]-3, -2, -0.8, -0.1,0.5, 0.8, 7[/tex]
Convert 0.5 and -0.1 back to fractions
[tex]-3, -2, -0.8, -\frac{1}{10} ,\frac{1}{2}, 0.8, 7[/tex]