👤

In ΔCDE, \text{m}\angle C = (4x-16)^{\circ}m∠C=(4x−16) ∘ , \text{m}\angle D = (6x-1)^{\circ}m∠D=(6x−1) ∘ , and \text{m}\angle E = (4x-13)^{\circ}m∠E=(4x−13) ∘ . Find \text{m}\angle C.M∠C.

Answer :

Answer:

m∠C = 44°

Step-by-step explanation:

In ΔCDE,

m∠C=(4x−16) ∘

m∠D=(6x−1) ∘

m∠E=(4x−13) ∘ .

The sum of angles in a triangle = 180°

Step 1

We solve for x

m∠C + m∠D + m∠E

(4x−16)° + (6x−1)° + (4x−13)° = 180°

4x - 16 + 6x - 1 + 4x - 13 = 180°

4x + 6x + 4x -16 - 1 - 13 = 180°

14x - 30 = 180°

14x = 180+ 30

14x = 210

x = 210/14

x = 15

Step 2

Find m∠C

m∠C = (4x−16)°

m∠C = (4 × 15 - 16)°

m∠C = (60 - 16)°

m∠C = 44°