👤

Answer :

Answer:

The line equation of the line is:

  • [tex]y=-\frac{3}{8}x+3[/tex]          

Step-by-step explanation:

Given the two points

  • (0,3)
  • (8,0)

Finding the slope between (0,3) and (8,0)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(0,\:3\right),\:\left(x_2,\:y_2\right)=\left(8,\:0\right)[/tex]

[tex]m=\frac{0-3}{8-0}[/tex]

[tex]m=-\frac{3}{8}[/tex]

Therefore, the slope of the line: m = -3/8

Using the point-slope form of the line equation

[tex]y-y_1=m\left(x-x_1\right)[/tex]

where m is the slope of the line and (x₁, y₁) is the point

substituting the values m = -3/8 and the point (0,3)

[tex]y-3=-\frac{3}{8}\left(x-0\right)[/tex]

[tex]y-3=-\frac{3}{8}x[/tex]

Add 3 to both sides

[tex]y-3+3=-\frac{3}{8}x+3[/tex]

Simplify

[tex]y=-\frac{3}{8}x+3[/tex]

Therefore, the line equation of the line is:

  • [tex]y=-\frac{3}{8}x+3[/tex]