I need help if you can that would be great thank you

Answer:
Simplifying the expression [tex](3\:.\:2)^5\div (3^2\:.\:2^3)[/tex] so, there is only one power of each base we get [tex]\mathbf{3^3\:.\:2^2}[/tex]
Option D is correct answer.
Step-by-step explanation:
We need to simply the expression [tex](3\:.\:2)^5\div (3^2\:.\:2^3)[/tex] so, there is only one power of each base.
Solving:
[tex](3\:.\:2)^5\div (3^2\:.\:2^3)[/tex]
We can write it as:
[tex]\frac{(3\:.\:2)^5}{3^2.2^3}[/tex]
Now using exponent rule: [tex](a\:.\:b)^m=a^m\:.\:b^n[/tex]
[tex]\frac{3^5\:.\:2^5}{3^2.2^3}[/tex]
Now using the exponent rule: [tex]\frac{a^m}{a^n}=a^{m-n}[/tex] the bases should be same
[tex]3^{5-2}\:.\:2^{5-3}\\=3^3\:.\:2^2[/tex]
So, simplifying the expression [tex](3\:.\:2)^5\div (3^2\:.\:2^3)[/tex] so, there is only one power of each base we get [tex]\mathbf{3^3\:.\:2^2}[/tex]
Option D is correct answer.