Answer :
Answer:
x² + y² = 841
Step-by-step explanation:
Midpoint of diameter is a center of a circle.
Coordinates of midpoint are
( [tex]x_{1}[/tex] , [tex]y_{1}[/tex] )
( [tex]x_{2}[/tex] , [tex]y_{2}[/tex] )
( [tex]\frac{x_{1} +x_{2} }{2}[/tex] , [tex]\frac{y_{1} +y_{2} }{2}[/tex] )
d = [tex]\sqrt{(x_{2} -x_{1})^2 +(y_{2} -y_{1})^2 }[/tex]
Equation of a circle with center at (h, k) and radius "r" is (x - h)² + (y - k)² = r²
~~~~~~~~~~
C(20, 21)
D(- 20, 21)
( [tex]\frac{-20+20}{2}[/tex] , [tex]\frac{-21+21}{2}[/tex] ) = (0, 0)
d = [tex]\sqrt{(-20-20)^2 +(21+21)^2}[/tex] = √3364 = 58
r = [tex]\frac{d}{2}[/tex] = 29
x² + y² = 29²
x² + y² = 841