👤

Answer :

Answer:

The length of [tex]\overline {FH}[/tex] is;

D. 38 units

Step-by-step explanation:

The given parameters are;

The type of the given quadrilateral FGHI = Rectangle

The diagonals of the quadrilateral = [tex]\overline {FH}[/tex] and [tex]\overline {GI}[/tex]

The length of IE = 3·x + 4

The length of EG = 5·x - 6

We have from segment addition postulate, [tex]\overline {GI}[/tex] = IE + EG

The properties of a rectangle includes;

1) Each diagonal bisects the other diagonal into two

Therefore,  [tex]\overline {FH}[/tex] bisects [tex]\overline {GI}[/tex], into two equal parts, from which we have;

IE = EG

[tex]\overline {GI}[/tex] = IE + EG

3·x + 4 = 5·x - 6

4 + 6 = 5·x - 3·x = 2·x

10 = 2·x

∴ x = 10/2 = 5

From which we have;

IE = 3·x + 4 = 3 × 5 + 4 = 19 units

EG = 5·x - 6 = 5 × 5 - 6 = 19 units

[tex]\overline {GI}[/tex] = IE + EG = 19 + 19 = 38 units

[tex]\overline {GI}[/tex] = 38 units

2) The lengths of the two diagonals are equal. Therefore, the length of segment [tex]\overline {FH}[/tex] is equal to the length of segment [tex]\overline {GI}[/tex]

Mathematically, we have;

[tex]\overline {FH}[/tex] = [tex]\overline {GI}[/tex] = 38 units

∴ [tex]\overline {FH}[/tex] = 38 units.