Answer :
Answer:
n=288
Step-by-step explanation:
Rewrite the equation as
β
n
=
18
β
8
β
8
β
18
.
β
n
=
18
β
8
β
8
β
18
To remove the radical on the left side of the equation, square both sides of the equation.
βn
2
=
(
18
β
8
β
8
β
18
)
2
Simplify each side of the equation.
Use
n
β
a
x
=
a
x
n
to rewrite
β
n as n
1
2
.
(
n
1
2
)
2
=
(
18
β
8
β
8
β
18
)
2
Simplify
(
n
1
2
)
2
.
Multiply the exponents in
(
n
1
2
)
2
.
Apply the power rule and multiply exponents,
(
a
m)n
=
a
m
n
.
n
1
2
β
2
=
(
18
β
8
β
8
β
18
)
2
Cancel the common factor of 2
Cancel the common factor.
n
1
2
β
2
=
(
18
β
8
β
8
β
18
)
2
Rewrite the expression.
n
1
=
(
18
β
8
β
8
β
18
)
2
Simplify.
n
=
(
18
β
8
β
8
β
18
)
2
Simplify
(
18
β
8
β
8
β
18
)
2
Simplify each term.
Rewrite
8 as 2
2
β
2
.
Factor
4 out of 8
n
=
(
18
β
4
(
2
)
β
8
β
18
)
2
Rewrite
4 as 2
2
n
=
(
18β
2
2
2
β
8
β
18
)
2
Pull terms out from under the radical.
n
=
(
18
(
2
β
2
)
β
8
β
18
)
2
Multiply
2 by 18
n
=
(
36
β
2
β
8
β
18
)
2
Rewrite
18
as
3
2
β
2
.
Factor
9
out of
18
.
n
=
(
36
β
2
β
8
β
9
(
2
)
)
2
Rewrite
9
as
3
2
.
n
=
(
36
β
2
β
8
β
3
2
β
2
)
2
Pull terms out from under the radical.
n
=
(
36
β
2
β
8
(
3
β
2
)
)
2
Multiply
3
by
β
8
.
n
=
(
36
β
2
β
24
β
2
)
2
Simplify terms.
Subtract
24
β
2
from
36
β
2
.
n
=
(
12
β
2
)
2
Simplify the expression.
Apply the product rule to
12
β
2
.
n
=
12
2
β
2
2
Raise
12
to the power of
2
.
n
=
144
β
2
2
Rewrite
β
2
2
as
2
.
Use
n
β
a
x
=
a
x
n
to rewrite
β
2
as
2
1
2
.
n
=
144
(
2
1
2
)
2
Apply the power rule and multiply exponents,
(
a
m
)
n
=
a
m
n
.
n
=
144
β
2
1
2
β
2
Combine
1
2
and
2
.
n
=
144
β
2
2
2
Cancel the common factor of
2
.
Cancel the common factor.
n
=
144
β
2
2
2
Rewrite the expression.
n
=
144
β
2
1
Evaluate the exponent.
n
=
144
β
2
Multiply
144
by
2
.
n
=
288