Answer :
Answer:
a) [tex]m = \frac{2\cdot E_{k}}{v^{2}}[/tex], b) [tex]v^{2} = \frac{2\cdot E_{k}}{m}[/tex], c) [tex]v = \sqrt{\frac{2\cdot E_{k}}{m } }[/tex]
Explanation:
a) Translational kinetic energy ([tex]E_{k}[/tex]), measured in joules, is represented by the following expression:
[tex]E_{k} = \frac{1}{2}\cdot m \cdot v^{2}[/tex] (1)
Where:
[tex]m[/tex] - Mass, measured in kilograms.
[tex]v[/tex] - Velocity, measured in meters per second.
Now we clear the mass within the formula:
[tex]E_{k} = \frac{1}{2}\cdot m\cdot v^{2}[/tex]
[tex]2\cdot E_{k} = m\cdot v^{2}[/tex]
[tex]m = \frac{2\cdot E_{k}}{v^{2}}[/tex]
b) Now we clear the velocity squared:
[tex]v^{2} = \frac{2\cdot E_{k}}{m}[/tex]
c) Now we clear the velocity:
[tex]v = \sqrt{\frac{2\cdot E_{k}}{m } }[/tex]