Answer :
Answer:
The coordinates of the point X:
- (x, y) = (-1, -7)
Step-by-step explanation:
Let X be the point.
As the point X is in the directed line segment from (-2,-8) to (5,-1) into the ratio of 1 to 6
i.e.
[tex]\left(x_1,\:y_1\right)\:=\:\left(-2,-8\right)[/tex]
[tex]\left(x_2,\:y_2\right)=\left(5,-1\right)[/tex]
Rise = y₂ - y₁
[tex]= -1 - (-8)[/tex]
[tex]= -1 + 8[/tex]
[tex]= 7[/tex]
Run = x₂ - x₁
[tex]= 5 - (-2)[/tex]
[tex]= 5 + 2[/tex]
[tex]= 7[/tex]
1 : 6 ratio means the point X lies at
[tex]\frac{1}{6+1}=\frac{1}{7}=14\%[/tex]
Thus,
rise for X [tex]=\:7\:\times \:14\%=1[/tex]
run for X [tex]=\:7\:\times \:14\%=1[/tex]
Thus, coordinates of X will be:
[tex]x = -2 + 1 = -1[/tex]
[tex]y = -8 + 1 = -7[/tex]
Therefore, we conclude that:
The coordinates of the point X:
- (x, y) = (-1, -7)
The point (-1, -7) divide the segment from (-2,-8) to (5,-1). in the ratio 1:6.
What is distance?
If a point O(x, y) divides the line segment AB in the ratio of n:m, where the endpoints of the line is A(x₁, y₁) and B(x₂. y₂), the point O is at:
[tex]x=\frac{n}{n+m}(x_2-x_1)+x_1 \\\\y=\frac{n}{n+m}(y_2-y_1)+y_1[/tex]
Given the ratio 1:6, let O(x, y) divide the segment from (-2,-8) to (5,-1). Hence:
[tex]x=\frac{1}{1+6}(5-(-2))+(-2)=-1\\\\y=\frac{1}{1+6}(-1-(-8))+(-8)=-7[/tex]
O = (-1, -7)
The point (-1, -7) divide the segment from (-2,-8) to (5,-1) in the ratio 1:6.
Find out more on distance at: https://brainly.com/question/17273444