Answer :
Answer:
[tex]J = 370g[/tex]
Step-by-step explanation:
Given
Represent the weight of the Jar with J and the sugar with S
Initially, we have:
[tex]J + S = 850g[/tex]
After 2/3 of sugar is removed we have:
[tex]J + S -\frac{2}{3}S= 530g[/tex]
Required
Determine the weight of the jar
[tex]J + S = 850g[/tex] --- (1)
[tex]J + S -\frac{2}{3}S= 530g[/tex] --- (2)
Simplify (2)
[tex]J + S -\frac{2S}{3}= 530g[/tex]
Take LCM
[tex]J + \frac{3S - 2S}{3}= 530g[/tex]
[tex]J + \frac{S}{3}= 530g[/tex]
Make S the subject in (1)
[tex]J + S = 850g[/tex]
[tex]S = 850g - J[/tex]
Substitute 850g - J for S in [tex]J + \frac{S}{3}= 530g[/tex]
[tex]J + \frac{850g - J}{3}= 530g[/tex]
Multiply through by 3
[tex]3 * J + 3*\frac{850g - J}{3}= 530g * 3[/tex]
[tex]3J + 850g - J= 1590g[/tex]
Collect Like Terms
[tex]3J - J= 1590g-850g[/tex]
[tex]2J= 740g[/tex]
Make J the subject
[tex]J = \frac{1}{2} * 740g[/tex]
[tex]J = 370g[/tex]
The jar weighs 370g