👤

Answer :

Answer:

[tex]J = 370g[/tex]

Step-by-step explanation:

Given

Represent the weight of the Jar with J and the sugar with S

Initially, we have:

[tex]J + S = 850g[/tex]

After 2/3 of sugar is removed we have:

[tex]J + S -\frac{2}{3}S= 530g[/tex]

Required

Determine the weight of the jar

[tex]J + S = 850g[/tex] --- (1)

[tex]J + S -\frac{2}{3}S= 530g[/tex] --- (2)

Simplify (2)

[tex]J + S -\frac{2S}{3}= 530g[/tex]

Take LCM

[tex]J + \frac{3S - 2S}{3}= 530g[/tex]

[tex]J + \frac{S}{3}= 530g[/tex]

Make S the subject in (1)

[tex]J + S = 850g[/tex]

[tex]S = 850g - J[/tex]

Substitute 850g - J for S in [tex]J + \frac{S}{3}= 530g[/tex]

[tex]J + \frac{850g - J}{3}= 530g[/tex]

Multiply through by 3

[tex]3 * J + 3*\frac{850g - J}{3}= 530g * 3[/tex]

[tex]3J + 850g - J= 1590g[/tex]

Collect Like Terms

[tex]3J - J= 1590g-850g[/tex]

[tex]2J= 740g[/tex]

Make J the subject

[tex]J = \frac{1}{2} * 740g[/tex]

[tex]J = 370g[/tex]

The jar weighs 370g

Answer:

370

Step-by-step explanation:

Go Teaching: Other Questions