Answer :
Answer:
The answer is "$8,160.08".
Explanation:
[tex]A= \text{future value} = \$ 15,000 \\\\P= \text{present value}= \$ 5,800 \\\\r=\tex{rate} =3.2 \%\\\\n= \text{time in years} = 4[/tex]
Using formula:
[tex]A=P(1+ \frac{r}{100})^n + \text{Investment in 3 years} \times (1.032)\\\\15,000=5,800 (1+ \frac{3.2}{100})^4 + \text{Investment in 3 years} \times (1.032)\\\\15,000=5,800 (1+ 0.032)^4 + \text{Investment in 3 years} \times (1.032)\\\\15,000=5,800 (1.032)^4 + \text{Investment in 3 years} \times (1.032)\\\\[/tex]
[tex]15,000 = 5,800 \times 1.13427612 +\text{Investment in 3 years} \times (1.032)\\\\15,000=6,578.8015 + \text{Investment in 3 years} \times (1.032)\\\\\text{Investment in 3 years} = \frac{(15000-6578.8015)}{1.032}\\\\\text{Investment in 3 years} = \frac{8,421.1985}{1.032}\\\\\text{Investment in 3 years} = 8,160.07607\\\\ \text{Investment in 3 years} = 8,160. 08[/tex]