Answer :
Answer:
(3, 2 )
Step-by-step explanation:
Given the 2 equations
4x + y = 14 → (1)
5x + 2y = 19 → (2)
Multiplying (1) by - 2 and adding to (2) will eliminate the y- term
- 8x - 2y = - 28 → (3)
Add (2) and (3) term by term to eliminate y
- 3x + 0 = - 9
- 3x = - 9 ( divide both sides by - 3 )
x = 3
Substitute x = 3 into either of the 2 equations and solve for y
Substituting into (1)
4(3) + y = 14
12 + y = 14 ( subtract 12 from both sides )
y = 2
solution is (3, 2 )
Step-by-step explanation:
[tex] \underline{ \underline{ \text{USING \: ELIMINATION \: METHOD}}}[/tex]
[tex] \underline{ \underline{ \text{ Solution}}} : [/tex]
- [tex] \text{4x + y = 14 - - - - - (i)}[/tex]
- [tex] \text{5x + 2y = 19 \: - - - - - (ii)}[/tex]
Multiply equation ( i ) by 2 & Subtract from ( ii ). The equation ( i ) now becomes 8x +2y = 28 { 2 ( 4x + y ) = 2 × 14 }. Remember that while subtracting the sign of each term of equation ( i ) changes and now , it becomes -8x-2y = -28.
[tex] \text{5x + 2y = 19}[/tex]
[tex] \text{ - 8x - 2y = - 28}[/tex]
_____________________
[tex] \text{ - 3x = - 9}[/tex]
Solve for x :
⤑ [tex] \tt{x = \frac{ - 9}{ - 3}} [/tex]
⤑ [tex] \tt{x = 3}[/tex]
Now , substitute the value of x in equation ( ii ) :
⟼ [tex] \text{5 × \: 3 + 2y = 19}[/tex]
⟼ [tex] \text{15 + 2y = 19} [/tex]
⟼ [tex] \text{2y = 19 - 15}[/tex]
⟼ [tex] \text{2y = 4}[/tex]
⟼ [tex] \text{y = 2}[/tex]
[tex] \pink{ \boxed{ \boxed{ \tt{⤿ \: Our \: final \: answer : \boxed{ \boxed{ \tt{x = 3 \: and \: y = 4}}}}}}}[/tex]
Hope I helped ! ツ
Have a wonderful day night ! ♡
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁