Answer :
Answer:
1742 hours
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Single light:
Mean of 1700 hours and standard deviation of 400 hours, which means that [tex]\mu = 1700, \sigma = 400[/tex]
Sample of 64:
This means that [tex]n = 64, s = \frac{400}{\sqrt{64}} = 50[/tex]
The probability is 0.20 that the sample mean lifetime is more than how many hours?
This is the 100 - 20 = 80th percentile, which is X when Z has a pvalue of 0.8. So X when Z = 0.84
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]0.84 = \frac{X - 1700}{50}[/tex]
[tex]X - 1700 = 50*0.84[/tex]
[tex]X = 1700 + 50*0.84[/tex]
[tex]X = 1742[/tex]