Answer :
Answer:
[tex]P(ABC) = 0.110592[/tex]
[tex]P(ABC^c) = 0.119808[/tex]
[tex]P(AB^cC) = 0.119808[/tex]
[tex]P(A^cBC) = 0.119808[/tex]
[tex]P(AB^cC^c) = 0.129792[/tex]
[tex]P(A^cBC^c) = 0.129792[/tex]
[tex]P(A^cB^cC) = 0.129792[/tex]
[tex]P(A^cB^cC^c) = 0.140608[/tex]
Step-by-step explanation:
Given
[tex]P(A) = P(B) = P(C) = 48\%[/tex]
Convert the probability to decimal
[tex]P(A) = P(B) = P(C) = 0.48[/tex]
Solving (a): P(ABC)
This is calculated as:
[tex]P(ABC) = P(A) * P(B) * P(C)[/tex]
This gives:
[tex]P(ABC) = 0.48*0.48*0.48[/tex]
[tex]P(ABC) = 0.110592[/tex]
Solving (b): [tex]P(ABC^c)[/tex]
This is calculated as:
[tex]P(ABC^c) = P(A) * P(B) * P(C^c)[/tex]
In probability:
[tex]P(C^c) = 1 - P(C)[/tex]
So, we have:
[tex]P(ABC^c) = P(A) * P(B) * (1 - P(C))[/tex]
[tex]P(ABC^c) = 0.48 * 0.48 * (1 - 0.48)[/tex]
[tex]P(ABC^c) = 0.48 * 0.48 * 0.52[/tex]
[tex]P(ABC^c) = 0.119808[/tex]
Solving (c): [tex]P(AB^cC)[/tex]
This is calculated as:
[tex]P(AB^cC) = P(A) * P(B^c) * P(C)[/tex]
[tex]P(AB^cC) = P(A) * [1 - P(B)] * P(C)[/tex]
[tex]P(AB^cC) = 0.48 * (1 - 0.48)* 0.48[/tex]
[tex]P(AB^cC) = 0.48 * 0.52* 0.48[/tex]
[tex]P(AB^cC) = 0.119808[/tex]
Solving (d): [tex]P(A^cBC)[/tex]
This is calculated as:
[tex]P(A^cBC) = P(A^c) * P(B) * P(C)[/tex]
[tex]P(A^cBC) = [1-P(A)] *P(B) * P(C)[/tex]
[tex]P(A^cBC) = (1 - 0.48)* 0.48 * 0.48[/tex]
[tex]P(A^cBC) = 0.52* 0.48 * 0.48[/tex]
[tex]P(A^cBC) = 0.119808[/tex]
Solving (e): [tex]P(AB^cC^c)[/tex]
This is calculated as:
[tex]P(AB^cC^c) = P(A) * P(B^c) * P(C^c)[/tex]
[tex]P(AB^cC^c) = P(A) * [1-P(B)] * [1-P(C)][/tex]
[tex]P(AB^cC^c) = 0.48 * [1-0.48] * [1-0.48][/tex]
[tex]P(AB^cC^c) = 0.48 * 0.52*0.52[/tex]
[tex]P(AB^cC^c) = 0.129792[/tex]
Solving (f): [tex]P(A^cBC^c)[/tex]
This is calculated as:
[tex]P(A^cBC^c) = P(A^c) * P(B) * P(C^c)[/tex]
[tex]P(A^cBC^c) = [1-P(A)] * P(B) * [1-P(C)][/tex]
[tex]P(A^cBC^c) = [1-0.48] * 0.48 * [1-0.48][/tex]
[tex]P(A^cBC^c) = 0.52 * 0.48 * 0.52[/tex]
[tex]P(A^cBC^c) = 0.129792[/tex]
Solving (g): [tex]P(A^cB^cC)[/tex]
This is calculated as:
[tex]P(A^cB^cC) = P(A^c) * P(B^c) * P(C)[/tex]
[tex]P(A^cB^cC) = [1-P(A)] * [1-P(B)] * P(C)[/tex]
[tex]P(A^cB^cC) = [1-0.48] * [1-0.48] * 0.48[/tex]
[tex]P(A^cB^cC) = 0.52 * 0.52 * 0.48[/tex]
[tex]P(A^cB^cC) = 0.129792[/tex]
Solving (h): [tex]P(A^cB^cC^c)[/tex]
This is calculated as:
[tex]P(A^cB^cC^c) = P(A^c) * P(B^c) * P(C^c)[/tex]
[tex]P(A^cB^cC^c) = [1-P(A)] * [1-P(B)] * [1-P(C)][/tex]
[tex]P(A^cB^cC^c) = [1-0.48] * [1-0.48] * [1-0.48][/tex]
[tex]P(A^cB^cC^c) = 0.52*0.52*0.52[/tex]
[tex]P(A^cB^cC^c) = 0.140608[/tex]