👤

Answer :

Explanation:

Given that,

Vector a = 4i+3j

Vector b = -13i+7j

We need to find the magnitude and direction of (a+b). So,

(a+b) = (4i+3j) + (-13i+7j)

= (4i-13i)+(3j+7j)

= -9i+10j

Magnitude of (a+b).

[tex]|a+b|=\sqrt{(-9)^2+10^2} \\\\=13.45[/tex]

Direction of (a+b),

[tex]\tan\theta=\dfrac{10}{-9}\\\\\theta=\tan^{-1}(\dfrac{-10}{9})\\\\\theta=-48.01^{\circ}[/tex]

Hence, this is the required solution.