Answer :
Answer:
1 + 8y + 28y² + 56y³ + 70[tex]y^{4}[/tex] + 56[tex]y^{5}[/tex] + 28[tex]y^{6}[/tex] + 8[tex]y^{7}[/tex] + [tex]y^{8}[/tex]
Step-by-step explanation:
For the expansion of [tex](1+y)^{8}[/tex]
Using the row of Pascal's triangle for n = 8 , that is the coefficients are
1 8 28 56 70 56 28 8 1
Decreasing powers of 1 from [tex]1^{8}[/tex] to [tex]1^{0}[/tex]
Increasing powers of y from [tex]y^{0}[/tex] to [tex]y^{8}[/tex]
Then
[tex](1+y)^{8}[/tex]
= 1 . [tex]1^{8}[/tex].[tex]y^{0}[/tex] + 8. [tex]1^{7}[/tex].[tex]y^{1}[/tex] + 28. [tex]1^{6}[/tex].y² + 56. [tex]1^{5}[/tex].y³ + 70. [tex]1^{4}[/tex].[tex]y^{4}[/tex] + 56. 1³.[tex]y^{5}[/tex] + 28. 1².[tex]y^{6}[/tex] + 8. [tex]1^{1}[/tex].[tex]y^{7}[/tex] + 1. [tex]1^{0}[/tex].[tex]y^{8}[/tex]
= 1 + 8y + 28y² + 56y³ + 70[tex]y^{4}[/tex] + 56[tex]y^{5}[/tex] + 28[tex]y^{6}[/tex] + 8[tex]y^{7}[/tex] + [tex]y^{8}[/tex]
Answer:
- y⁸ + 8y⁷ + 28y⁶ + 56y⁵ + 70y⁴ + 56y³ + 28y² + 8y + 1
Step-by-step explanation:
Given binomial
- (1 + y)⁸
Expanding using Pascal triangle (attached)
Replace a and b with y and 1 in the bottom row of the triangle
- (1 + y)⁸ =
- (y + 1)⁸ =
- y⁸ + 8y⁷ + 28y⁶ + 56y⁵ + 70y⁴ + 56y³ + 28y² + 8y + 1
