👤

Answer :

Answer:

1 + 8y + 28y² + 56y³ + 70[tex]y^{4}[/tex] + 56[tex]y^{5}[/tex] + 28[tex]y^{6}[/tex] + 8[tex]y^{7}[/tex] + [tex]y^{8}[/tex]

Step-by-step explanation:

For the expansion of [tex](1+y)^{8}[/tex]

Using the row of Pascal's triangle for n = 8 , that is the coefficients are

1  8  28  56  70  56  28  8  1

Decreasing powers of 1 from [tex]1^{8}[/tex] to [tex]1^{0}[/tex]

Increasing powers of y from [tex]y^{0}[/tex] to [tex]y^{8}[/tex]

Then

[tex](1+y)^{8}[/tex]

= 1 . [tex]1^{8}[/tex].[tex]y^{0}[/tex] + 8. [tex]1^{7}[/tex].[tex]y^{1}[/tex] + 28. [tex]1^{6}[/tex].y² + 56. [tex]1^{5}[/tex].y³ + 70. [tex]1^{4}[/tex].[tex]y^{4}[/tex] + 56. 1³.[tex]y^{5}[/tex] + 28. 1².[tex]y^{6}[/tex] + 8. [tex]1^{1}[/tex].[tex]y^{7}[/tex] + 1. [tex]1^{0}[/tex].[tex]y^{8}[/tex]

= 1 + 8y + 28y² + 56y³ + 70[tex]y^{4}[/tex] + 56[tex]y^{5}[/tex] + 28[tex]y^{6}[/tex] + 8[tex]y^{7}[/tex] + [tex]y^{8}[/tex]

Answer:

  • y⁸ + 8y⁷ + 28y⁶ + 56y⁵ + 70y⁴ + 56y³ + 28y² + 8y + 1

Step-by-step explanation:

Given binomial

  • (1 + y)⁸

Expanding using Pascal triangle (attached)

Replace a and b with y and 1 in the bottom row of the triangle

  • (1 + y)⁸ =
  • (y + 1)⁸ =
  • y⁸ + 8y⁷ + 28y⁶ + 56y⁵ + 70y⁴ + 56y³ + 28y² + 8y + 1
View image Mhanifa