👤

Answer :

Answer:

Options (1), (3) and (4)

Step-by-step explanation:

From ΔABC given in the picture,

By Pythagoras theorem

Hypotenuse² = (Leg 1)² + (Leg 2)²

BC² = AB² + AC²

(18)² = 9² + AC²

AC = [tex]\sqrt{324-81}[/tex]

AC = [tex]9\sqrt{3}[/tex] cm  

sin(C) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

         = [tex]\frac{AB}{BC}[/tex]

         = [tex]\frac{9\sqrt{3}}{18}[/tex]

sin(C) = [tex]\frac{\sqrt{3} }{2}[/tex]

sin(B) = [tex]\frac{AC}{BC}[/tex]

         = [tex]\frac{9}{18}[/tex]

         = [tex]\frac{1}{2}[/tex]

cos(B) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

          = [tex]\frac{9\sqrt{3}}{18}[/tex]

          = [tex]\frac{\sqrt{3} }{2}[/tex]

tan(B) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

          = [tex]\frac{AC}{AB}[/tex]

          = [tex]\frac{9}{9\sqrt{3} }[/tex]

          = [tex]\frac{1}{\sqrt{3} }[/tex]

tan(C) = [tex]\frac{AB}{AC}[/tex]

          = [tex]\frac{9\sqrt{3}}{9}[/tex]

          = [tex]\sqrt{3}[/tex]

Therefore, Options (1), (3) and (4) are the correct options.

Answer:

Options (1), (3) and (4)

Step-by-step explanation:

From ΔABC given in the picture,

By Pythagoras theorem

Hypotenuse² = (Leg 1)² + (Leg 2)²

BC² = AB² + AC²

(18)² = 9² + AC²

AC =

AC =  cm  

sin(C) =

        =

        =

sin(C) =

sin(B) =

        =

        =

cos(B) =

         =

         =

tan(B) =

         =

         =

         =

tan(C) =

         =

         =

Therefore, Options (1), (3) and (4) are the correct options.Step-by-step explanation: