Answer :
Answer:
[tex]QR = 6.0033[/tex]
[tex]QS = 8.22[/tex]
[tex]RS = 6.0033[/tex]
QRS is isosceles
Step-by-step explanation:
Given
See attachment for complete question
From the attachment, we have the following parameters[tex]QR = \sqrt{(-3-0)^2+(-5.2-0)^2}[/tex]
[tex]QR = \sqrt{9+27.04}[/tex]
[tex]QS = \sqrt{(-3-5)^2+(-5.2-(-3.322))^2}[/tex]
[tex]QS = \sqrt{64+3.53} = \sqrt{67.53[/tex]
[tex]RS = \sqrt{(0-5)^2 + (0 - (-3.322))^2}[/tex]
[tex]RS = \sqrt{(25 + 11.04}[/tex]
Solving further, we have:
[tex]QR = \sqrt{9+27.04}[/tex]
[tex]QR = \sqrt{36.04}[/tex]
[tex]QR = 6.0033[/tex]
[tex]QS = \sqrt{64+3.53} = \sqrt{67.53}[/tex]
[tex]QS = 8.22[/tex]
[tex]RS = \sqrt{25 + 11.04}[/tex]
[tex]RS = \sqrt{36.04}[/tex]
[tex]RS = 6.0033[/tex]
From the calculations;
[tex]RS = QR = 6.0033[/tex]
This means that: QRS is isosceles
