Answer :
Answer:
The answer is "She saves [tex]\$7804[/tex] on the trip".
Explanation:
Please find the complete question in the attached file.
Given:
[tex](P) =\$2500\\\\(n) =3 \ years\\\\(r) = 4\%\\\\ \text{compounding period in year}\ (m) =1\\[/tex]
The formula for Effective annual rate [tex]= ((1+(\frac{r}{m}))^m)-1[/tex]
[tex]=((1+(\frac{4\%}{1}))^1)-1\\\\=((1+(\frac{4}{100}))^1)-1\\\\=((1+0.04)^1)-1\\\\=((1.04)^1)-1\\\\ =1.04-1\\\\ =0.04 \\\\ = 4\%\\\\[/tex]
Its potential value of its rental formula is used to measure the value of the rental at the middle of the 3rd year
The formula for the future annuity [tex]= P\times \frac{(((1+i)^n)-1)}{i}[/tex]
[tex]=2500\times \frac{(((1+0.04)^3)-1)}{0.04}\\\\=2500\times \frac{(((1.04)^3)-1)}{0.04}\\\\=2500\times \frac{(1.124864-1)}{0.04}\\\\=2500\times \frac{0.124864}{0.04}\\\\=2500\times 3.1216\\\\=7804[/tex]
