Answer:
[tex]\frac{x^2-5}{3} =y\\[/tex]
Step-by-step explanation:
since it is f(x), we can assume that
[tex]f(x)=y[/tex]
[tex]y=\sqrt{3x+5\\}[/tex]
to find the inverse of a function you just swap the x and y and then solve for y
[tex]x=\sqrt{3y+5\\}[/tex]
[tex]x^2=3y+5[/tex]
[tex]x^2-5=3y[/tex]
[tex]\frac{x^2-5}{3} =y\\[/tex]
Hope that helps :)