Answer :
Answer:
[tex]0.842\ \text{lb ft}[/tex]
[tex]0.1052\ \text{lb ft}[/tex]
Explanation:
d = Diameter of wheel = 6 in
r = Radius = 3 in = [tex]\dfrac{3}{12}=0.25\ \text{ft}[/tex]
t = Thickness = [tex]\dfrac{3}{4}=0.75\ \text{in}=\dfrac{0.75}{12}\ \text{ft}[/tex]
w = Specific weight = [tex]425\ \text{lb/ft}^3[/tex]
[tex]t_2[/tex] = Time taken to slow down = 35 s
[tex]t_1[/tex] = Time taken to reach operating speed = 5 s
[tex]\omega[/tex] = Angular velocity = [tex]3450\times \dfrac{2\pi}{60}\ \text{rad/s}[/tex]
Weight is given by
[tex]W=2\pi r^2tw\\\Rightarrow W=2\pi\times 0.25^2\times \dfrac{0.75}{12}\times 425\\\Rightarrow W=10.43\ \text{lbs}[/tex]
Mass is given by
[tex]m=\dfrac{W}{g}\\\Rightarrow m=\dfrac{10.43}{32}\\\Rightarrow m=0.326\ \text{lb}[/tex]
Moment of inertia is given by
[tex]I=\dfrac{mr^2}{2}\\\Rightarrow I=\dfrac{0.326\times 0.25^2}{2}\\\Rightarrow I=0.01019\ \text{lb ft}^2[/tex]
Angular acceleration while slowing down is given by
[tex]\alpha_f=\dfrac{\omega}{t_2}\\\Rightarrow \alpha_f=\dfrac{3450\times \dfrac{2\pi}{60}}{35}\\\Rightarrow \alpha_f=10.32\ \text{rad/s}^2[/tex]
Frictional moment is given
[tex]\tau_f=I\alpha_f\\\Rightarrow \tau_f=0.01019\times 10.32\\\Rightarrow \tau_f=0.1052\ \text{lb ft}[/tex]
Frictional moment is [tex]0.1052\ \text{lb ft}[/tex]
Angular acceleration while speeding up is given by
[tex]\alpha=\dfrac{\omega}{t_1}\\\Rightarrow \alpha=\dfrac{3450\times \dfrac{2\pi}{60}}{5}\\\Rightarrow \alpha=72.26\ \text{rad/s}^2[/tex]
Motor torque is given by
[tex]\tau_m=\tau_f+I\alpha\\\Rightarrow \tau_m=0.1052+0.01019\times 72.26\\\Rightarrow \tau_m=0.842\ \text{lb ft}[/tex]
Motor torque is [tex]0.842\ \text{lb ft}[/tex].