Answer :
Answer:
[tex]\boxed {\boxed {\sf molarity = 0.17 \ M \ C_6H_12O_6}}[/tex]
Explanation:
Molarity is found by dividing the moles of solute by liters of solution.
[tex]molarity = \frac {moles}{liters}[/tex]
We are given grams of a compound and milliliters of solution, so we must make 2 conversions.
1. Gram to Moles
We must use the molar mass. First, use the Periodic Table to find the molar masses of the individual elements.
- C: 12.011 g/mol
- H: 1.008 g/mol
- O: 15.999 g/mol
Next, look at the formula and note the subscripts. This tells us the number of atoms in 1 molecule. We multiply the molar mass of each element by its subscript.
6(12.011)+12(1.008)+6(15.999)=180.156 g/mol
Use this number as a ratio.
[tex]\frac {180.156 \ g\ C_6H_12 O_6}{ 1 \ mol \ C_6H_12O_6}[/tex]
Multiply by the given number of grams.
[tex]78 \ g \ C_6H_12O_6 *\frac {180.156 \ g\ C_6H_12 O_6}{ 1 \ mol \ C_6H_12O_6}[/tex]
Flip the fraction and divide.
[tex]78 \ g \ C_6H_12O_6 *\frac { 1 \ mol \ C_6H_12O_6}{180.156 \ g\ C_6H_12 O_6}[/tex]
[tex]\frac { 78 \ mol \ C_6H_12O_6}{180.156 }= 0.432958102977 \ mol \ C_6H_12O_6[/tex]
2. Milliliters to Liters
There are 1000 milliliters in 1 liter.
[tex]\frac {1 \ L }{ 1000 \ mL}[/tex]
Multiply by 2500 mL.
[tex]2500 \ mL* \frac {1 \ L }{ 1000 \ mL}[/tex]
[tex]2500 * \frac {1 \ L }{ 1000 }= 2.5 \ L[/tex]
3. Calculate Molarity
Finally, divide the moles by the liters.
[tex]molarity = \frac {0.432958102977 \ mol \ C_6H_12O_6}{ 2.5 \ L}[/tex]
[tex]molarity = 0.173183241191 \ mol \ C_6H_12O_6/L[/tex]
The original measurement has 2 significant figures, so our answer must have the same. That is the hundredth place and the 3 tells us to leave the 7.
[tex]molarity \approx 0.17 \ mol \ C_6H_12O_6 /L[/tex]
1 mole per liter is also equal to 1 M.
[tex]molarity = 0.17 \ M \ C_6H_12O_6[/tex]