👤

Answer :

Answer:

Step-by-step explanation:

Question 13.

By applying cosine rule,

cos(45°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{1}{\sqrt{2} }=\frac{10}{y}[/tex]

y = 10√2

By applying sine rule,

sin(45°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{1}{\sqrt{2} }=\frac{x}{y}[/tex]

[tex]\frac{1}{\sqrt{2} }=\frac{x}{10\sqrt{2} }[/tex]

x = 10

Question 15.

By applying sine rule,

sin(60°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{\sqrt{3} }{2}=\frac{y}{32}[/tex]

y = 16√3

By applying cosine rule,

cos(60°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{1}{2}=\frac{x}{32}[/tex]

x = 16

Question 17.

By applying sine rule,

sin(60°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{\sqrt{3} }{2}=\frac{11\sqrt{3} }{y}[/tex]

y = 22

By applying cosine rule,

cos(60°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{1}{2}=\frac{x}{y}[/tex]

[tex]\frac{1}{2}=\frac{x}{22}[/tex]

x = 11