Answer :
Answer:
Area of ΔQRS = 2.3 square inches
Step-by-step explanation:
From the given information,
<S + <Q + <R = [tex]180^{o}[/tex]
51 + 44 + <R = [tex]180^{o}[/tex]
95 + <R = [tex]180^{o}[/tex]
<R = [tex]180^{o}[/tex] - 95
= [tex]85^{o}[/tex]
<R = [tex]85^{o}[/tex]
Applying the Sine rule, we have;
[tex]\frac{q}{SinQ}[/tex] = [tex]\frac{r}{SinR}[/tex] = [tex]\frac{s}{SinS}[/tex]
Using [tex]\frac{r}{SinR}[/tex] = [tex]\frac{s}{SinS}[/tex]
[tex]\frac{r}{Sin 85}[/tex] = [tex]\frac{2.3}{Sin51}[/tex]
r = [tex]\frac{2.3*Sin85}{sin51}[/tex]
= 2.9483
r = 2.9 inches
Also, [tex]\frac{q}{SinQ}[/tex] = [tex]\frac{s}{SinS}[/tex]
[tex]\frac{q}{Sin44}[/tex] = [tex]\frac{2.3}{Sin51}[/tex]
q = [tex]\frac{2.3*Sin44}{Sin51}[/tex]
= 2.0559
q = 2.0 inches
From Herons formula,
Area of a triangle = [tex]\sqrt{s(s-q)(s-r)(s-s)}[/tex]
s = [tex]\frac{2.3 + 2.0 + 2.9}{2}[/tex]
= 3.6
Area of ΔQRS = [tex]\sqrt{3.6(3.6-2.0(3.6-2.9)(3.6-2.3)}[/tex]
= 2.2895
Area of ΔQRS = 2.3 square inches