👤

Answer :

Answer:

Area of ΔQRS = 2.3 square inches

Step-by-step explanation:

From the given information,

<S + <Q + <R = [tex]180^{o}[/tex]

51 + 44 + <R = [tex]180^{o}[/tex]

95 + <R = [tex]180^{o}[/tex]

<R = [tex]180^{o}[/tex] - 95

    = [tex]85^{o}[/tex]

<R = [tex]85^{o}[/tex]

Applying the Sine rule, we have;

[tex]\frac{q}{SinQ}[/tex] = [tex]\frac{r}{SinR}[/tex] = [tex]\frac{s}{SinS}[/tex]

Using [tex]\frac{r}{SinR}[/tex] = [tex]\frac{s}{SinS}[/tex]

[tex]\frac{r}{Sin 85}[/tex] = [tex]\frac{2.3}{Sin51}[/tex]

r = [tex]\frac{2.3*Sin85}{sin51}[/tex]

  = 2.9483

r = 2.9 inches

Also, [tex]\frac{q}{SinQ}[/tex] = [tex]\frac{s}{SinS}[/tex]

[tex]\frac{q}{Sin44}[/tex] = [tex]\frac{2.3}{Sin51}[/tex]

q = [tex]\frac{2.3*Sin44}{Sin51}[/tex]

  = 2.0559

q = 2.0 inches

From Herons formula,

Area of a triangle = [tex]\sqrt{s(s-q)(s-r)(s-s)}[/tex]

s = [tex]\frac{2.3 + 2.0 + 2.9}{2}[/tex]

  = 3.6

Area of ΔQRS = [tex]\sqrt{3.6(3.6-2.0(3.6-2.9)(3.6-2.3)}[/tex]

                        = 2.2895

Area of ΔQRS = 2.3 square inches

Answer:

2.4

Step-by-step explanation: