Answer :
Answer:
Independent events
Step-by-step explanation:
Given
[tex]P(A) = 0.50[/tex]
[tex]P(B)= 0.70[/tex]
[tex]P(A\ u\ B) = 0.85[/tex]
Required
Determine the relationship between the events
To do this, we simply calculate P(A n B) using:
[tex]P(A\ n\ B) = P(A) * P(B)[/tex]
and
[tex]P(A\ n\ B) = P(A) + P(B) - P(A\ u\ B)[/tex]
So, we have:
[tex]P(A\ n\ B) = P(A) * P(B)[/tex]
[tex]P(A\ n\ B) = 0.50 * 0.70[/tex]
[tex]P(A\ n\ B) = 0.35[/tex]
and
[tex]P(A\ n\ B) = P(A) + P(B) - P(A\ u\ B)[/tex]
[tex]P(A\ n\ B) = 0.50 + 0.70 - 0.85[/tex]
[tex]P(A\ n\ B) = 0.35[/tex]
Since: [tex]P(A\ n\ B) = P(A) * P(B)[/tex] [tex]= 0.35[/tex]
Then: the events are independent