👤

A 3kg horizontal disk of radius 0.2m rotates about its center with an angular velocity of 50rad/s. The edge of the horizontal disk is placed in contact with a wall, and the disk comes to rest after 10s. Which of the following situations associated with linear impulse is analogous to the angular impulse that is described?

a. A 3kg block is initially at rest. An applied force of 3N is applied to the block, but the block does not move.
b. A 3kg block is initially at rest. A net force of 3N is applied to the block until it has a speed of 10m/s.
c. A 3kg block is initially traveling at 10m/s. An applied force of 3N is applied to the block in the direction of its velocity vector for 10s.
d. A 3kg block is initially traveling at 10m/s. The block encounters a 3N frictional force until the block eventually stops.

Answer :

Answer:

D

Explanation:

From the information given:

The angular speed for the block [tex]\omega = 50 \ rad/s[/tex]

Disk radius (r) = 0.2 m

The block Initial velocity is:

[tex]v = r \omega \\ \\ v = (0.2 \times 50) \\ \\ v= 10 \ m/s[/tex]

Change in the block's angular speed is:

[tex]\Delta _{\omega} = \omega - 0 \\ \\ = 50 \ rad/s[/tex]

However, on the disk, moment of inertIa is:

[tex]I= mr^2 \\ \\ I = (3 \times 0.2^2) \\ \\ I = 0.12 \ kgm^2[/tex]

The time t = 10s

Frictional torques by the wall on the disk is:

[tex]T = I \times (\dfrac{\Delta_{\omega}}{t}) \\ \\ = 0.12 \times (\dfrac{50}{10}) \\ \\ =0.6 \ N.m[/tex]

Finally, the frictional force is calculated as:

[tex]F = \dfrac{T}r{}[/tex]

[tex]F= \dfrac{0.6}{0.2} \\ \\ F = 3N[/tex]