Answer :
Answer:
[tex]\boxed {\boxed {\sf mean \approx 6.3}}[/tex]
Step-by-step explanation:
We are given this data and asked to find the data.
8, 7, 8, 5, 4, 6
The mean is also called the average. It is found by dividing the sum of the terms by the number of terms.
[tex]mean= \frac {sum \ of \ terms}{number \ of \ terms}[/tex]
First, we calculate the sum of the terms. Add up all the numbers.
- sum= 8+7+8+5+4+6
- sum= 38
[tex]mean=\frac{38}{number \ of \ terms}[/tex]
Next, divide by the number of terms. There are 6 terms (also, there are 6 students that reported).
[tex]mean=\frac{38}{6}\\mean=6.33333333333[/tex]
Let's round to the nearest tenth.
- 6.33333333333
The 3 in the hundredth place tells us to leave the 3 in the tenth place.
[tex]mean \approx 6.3[/tex]
The mean number of movies the students saw is approximately 6.3
Step-by-step explanation:
Terms are
- 8,6,8,5,4,6
[tex] \rm \mapsto \: mean = \frac{sum \: of \: terms}{number \: of \: terms} \\ \rm \mapsto \: \frac{8 + 6 + 8 + 5 + 4 + 6}{6} \\ \rm \mapsto \: \frac{14 + 13 + 10}{6} \\ \rm \mapsto \: \frac{37}{6} \\ \rm \mapsto \: 6.166 \\ \rm \mapsto \: 6.1 \overline{6} \\ \rm \mapsto \: 6.2[/tex]
[tex]\boxed{\large{\sf Mean\approx 6.2}}[/tex]
[tex]\sf Knowledge\:booster{\begin{cases}\bf{\dag}\:\:\underline{\textsf{Fraction Rules :}}\\\\\bigstar\:\:\sf\dfrac{A}{C} + \dfrac{B}{C} = \dfrac{A+B}{C} \\\\\bigstar\:\:\sf{\dfrac{A}{C} - \dfrac{B}{C} = \dfrac{A-B}{C}}\\\\\bigstar\:\:\sf\dfrac{A}{B} \times \dfrac{C}{D} = \dfrac{AC}{BD}\\\\\bigstar\:\:\sf\dfrac{A}{B} + \dfrac{C}{D} = \dfrac{AD}{BD} + \dfrac{BC}{BD} = \dfrac{AD+BC}{BD} \\\\\bigstar\:\:\sf\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{AD}{BD} - \dfrac{BC}{BD} = \dfrac{AD-BC}{BD}\\\\\bigstar \:\:\sf \dfrac{A}{B} \div \dfrac{C}{D} = \dfrac{A}{B} \times \dfrac{D}{C} = \dfrac{AD}{BC}\end{cases}}[/tex]