👤

A shoe company is going to close one of its two stores and combine all the inventory from
both stores. These polynomials represent the inventory in each store:
Store A:
2

0-19-
Store B: 39?-
Which expression represents the combined inventory of the two stores?

Answer :

Answer:

[tex]\frac{7}{2}g^2 -\frac{4}{5}g+\frac{15}{4}[/tex]

Step-by-step explanation:

Given

[tex]A:\frac{1}{2}g^2+\frac{7}{2}[/tex]

[tex]B: 3g^2-\frac{4}{5}g+\frac{1}{4}[/tex]

Required

Inventory for both stores

We simply add up the given inventories

[tex]A + B =\frac{1}{2}g^2+\frac{7}{2} + 3g^2-\frac{4}{5}g+\frac{1}{4}[/tex]

Collect like terms

[tex]A + B =\frac{1}{2}g^2+ 3g^2 -\frac{4}{5}g+\frac{1}{4}+\frac{7}{2}[/tex]

Take LCM and solve

[tex]A + B =\frac{g^2 + 6g^2}{2} -\frac{4}{5}g+\frac{1}{4}+\frac{7}{2}[/tex]

[tex]A + B =\frac{7}{2}g^2 -\frac{4}{5}g+\frac{1}{4}+\frac{7}{2}[/tex]

[tex]A + B =\frac{7}{2}g^2 -\frac{4}{5}g+\frac{1+14}{4}[/tex]

[tex]A + B =\frac{7}{2}g^2 -\frac{4}{5}g+\frac{15}{4}[/tex]

Hence, the combined inventory is: [tex]\frac{7}{2}g^2 -\frac{4}{5}g+\frac{15}{4}[/tex]