Answer :
Answer:
[tex]\frac{7}{2}g^2 -\frac{4}{5}g+\frac{15}{4}[/tex]
Step-by-step explanation:
Given
[tex]A:\frac{1}{2}g^2+\frac{7}{2}[/tex]
[tex]B: 3g^2-\frac{4}{5}g+\frac{1}{4}[/tex]
Required
Inventory for both stores
We simply add up the given inventories
[tex]A + B =\frac{1}{2}g^2+\frac{7}{2} + 3g^2-\frac{4}{5}g+\frac{1}{4}[/tex]
Collect like terms
[tex]A + B =\frac{1}{2}g^2+ 3g^2 -\frac{4}{5}g+\frac{1}{4}+\frac{7}{2}[/tex]
Take LCM and solve
[tex]A + B =\frac{g^2 + 6g^2}{2} -\frac{4}{5}g+\frac{1}{4}+\frac{7}{2}[/tex]
[tex]A + B =\frac{7}{2}g^2 -\frac{4}{5}g+\frac{1}{4}+\frac{7}{2}[/tex]
[tex]A + B =\frac{7}{2}g^2 -\frac{4}{5}g+\frac{1+14}{4}[/tex]
[tex]A + B =\frac{7}{2}g^2 -\frac{4}{5}g+\frac{15}{4}[/tex]
Hence, the combined inventory is: [tex]\frac{7}{2}g^2 -\frac{4}{5}g+\frac{15}{4}[/tex]