BD = 21 m,
RC = 25 m.
DE = 40 m.
AB = ? m.
Find AB

Given:
Consider the given sides are,
[tex]BD=21m[/tex]
[tex]BC=25m[/tex]
[tex]DE=40m[/tex]
[tex]AB=xm[/tex]
To find:
The measure of AB.
Solution:
Let x be the measure of AB.
From the given figure it is clear that,
[tex]\angle ADE \cong \angle ABC[/tex] (Right angles)
[tex]\angle ADE \cong \angle ABC[/tex] (Corresponding angles)
Two corresponding angles are congruent. So, by AA property of similarity,
[tex]\Delta ABC\sim \Delta ADE[/tex]
Corresponding sides of similar triangle are proportional.
[tex]\dfrac{AB}{BC}=\dfrac{AD}{DE}[/tex]
[tex]\dfrac{x}{25}=\dfrac{(x+21)}{40}[/tex]
[tex]40x=25(x+21)[/tex]
[tex]40x=25x+525[/tex]
Isolating x, we get
[tex]40x-25x=525[/tex]
[tex]15x=525[/tex]
[tex]x=\dfrac{525}{15}[/tex]
[tex]x=35[/tex]
Therefore, the measure of AB is 35 m.