πŸ‘€

Answer :

Answer:

a = √5

b ∈ (βˆ’βˆž,∞)

Step-by-step explanation:

(7 + 3√5)/(3 + √5) - (7 - 3√5)/(3 - √5) = a + b√5

⇔ (7 + 3√5)(3 - √5)/(3 + √5)(3 -√5) - (7 - 3√5)(3 + √5)/(3 + √5)(3 -√5) = a + b√5

⇔ (7 + 3√5)(3 - √5) -  (7 - 3√5)(3 + √5)/(3 + √5)(3 -√5) = a + b√5

⇔ 4√5/4 = a + b√5

⇔ √5 = a + b√5

⇔ b = (5 - a√5)/5

Replace b with (5 - a√5)/5

β‡’ a +  (5 - a√5)/5 = √5

⇔ a Γ— 5 + (5 - a√5)(5)/5 = √5 Γ— 5

⇔ a Γ— 5 + 5 - a√5 = 5√5

⇔ a Γ— 5 - √5 Γ— a = 5√5 - 5

⇔ a(5 - √5) = 5√5 - 5

⇔ a = √5