👤

Answer :

Answer:

[tex]m = 10\sqrt 3[/tex]

[tex]n = 10[/tex]

Step-by-step explanation:

Required

Find m and n

Considering the given angle, we have:

[tex]\sin(60) = \frac{Opposite}{Hypotenuse}[/tex]

This gives:

[tex]\sin(60) = \frac{m}{20}[/tex]

Make m ths subject

[tex]m = 20 * \sin(60)[/tex]

[tex]\sin(60) =\frac{\sqrt 3}{2}[/tex]

So, we have:

[tex]m = 20 *\frac{\sqrt 3}{2}[/tex]

[tex]m = 10\sqrt 3[/tex]

Considering the given angle again, we have:

[tex]\cos(60) = \frac{Adjacent}{Hypotenuse}[/tex]

This gives:

[tex]\cos(60) = \frac{n}{20}[/tex]

Make n the subject

[tex]n = 20 * \cos(60)[/tex]

[tex]\sin(60) =\frac{1}{2}[/tex]

So, we have:

[tex]n = 20 *\frac{1}{2}[/tex]

[tex]n = 10[/tex]

Go Teaching: Other Questions