Which expression can be simplified as 1/18n? (n2)9. (n^-9)-2. (n^-6)-3. (n^-6)-3. (n-3)^6

Answer:
[tex]\frac{1}{n^{18}} = (n^{-3})^6[/tex]
Step-by-step explanation:
Given
[tex]\frac{1}{n^{18}}[/tex]
Required
Determine its equivalent
[tex]\frac{1}{n^{18}}[/tex]
Express 18 as 3 * 6
[tex]\frac{1}{n^{18}} = \frac{1}{(n^{3})^6}[/tex]
This can be rewritten as:
[tex]\frac{1}{n^{18}} = (\frac{1}{n^{3}})^6[/tex]
Apply the following law of indices:'
[tex]\frac{1}{a^b} = a^{-b}[/tex]
[tex]\frac{1}{n^{18}} = (n^{-3})^6[/tex]
Hence;
(d) is correct