👤

Answer :

Given:

m∠EAC = 120° and m∠HBI = 84°.

To find:

The measure of ∠BCA.

Solution:

If two lines intersect each other then the vertically opposite angles are equal.

[tex]\angle HBI \cong \angle ABC[/tex]             (Vertically opposite angles)

[tex]m\angle HBI = m\angle ABC[/tex]    

[tex]84^\circ = m\angle ABC[/tex]              ...(i)

If two angles forms a linear pair, then  their sum is 180 degrees.

[tex]m\angle BAC+m\angle EAC=180^\circ[/tex]                 (Linear pair)

[tex]m\angle BAC+120^\circ=180^\circ[/tex]

[tex]m\angle BAC=180^\circ-120^\circ[/tex]

[tex]m\angle BAC=60^\circ[/tex]              ...(ii)

According to the angle sum property, the sum of all interior angles of a triangle is 180 degrees.

[tex]m\angle ABC+m\angle BAC+m\angle BCA=180^\circ[/tex]                 (Angle sum property)

[tex]84^\circ+60^\circ+m\angle BCA=180^\circ[/tex]          [Using (i) and (ii)]

[tex]144^\circ+m\angle BCA=180^\circ[/tex]

[tex]m\angle BCA=180^\circ-144^\circ[/tex]

[tex]m\angle BCA=36^\circ[/tex]

Therefore, the correct option is C.