Answer :
Answer:
City A and city B will have equal population 25years after 1990
Step-by-step explanation:
Given
Let
[tex]t \to[/tex] years after 1990
[tex]A_t \to[/tex] population function of city A
[tex]B_t \to[/tex] population function of city B
City A
[tex]A_0 = 10000[/tex] ---- initial population (1990)
[tex]r_A =3\%[/tex] --- rate
City B
[tex]B_{10} = \frac{1}{2} * A_{10}[/tex] ----- t = 10 in 2000
[tex]A_{20} = B_{20} * (1 + 20\%)[/tex] ---- t = 20 in 2010
Required
When they will have the same population
Both functions follow exponential function.
So, we have:
[tex]A_t = A_0 * (1 + r_A)^t[/tex]
[tex]B_t = B_0 * (1 + r_B)^t[/tex]
Calculate the population of city A in 2000 (t = 10)
[tex]A_t = A_0 * (1 + r_A)^t[/tex]
[tex]A_{10} = 10000 * (1 + 3\%)^{10}[/tex]
[tex]A_{10} = 10000 * (1 + 0.03)^{10}[/tex]
[tex]A_{10} = 10000 * (1.03)^{10}[/tex]
[tex]A_{10} = 13439.16[/tex]
Calculate the population of city A in 2010 (t = 20)
[tex]A_t = A_0 * (1 + r_A)^t[/tex]
[tex]A_{20} = 10000 * (1 + 3\%)^{20}[/tex]
[tex]A_{20} = 10000 * (1 + 0.03)^{20}[/tex]
[tex]A_{20} = 10000 * (1.03)^{20}[/tex]
[tex]A_{20} = 18061.11[/tex]
From the question, we have:
[tex]B_{10} = \frac{1}{2} * A_{10}[/tex] and [tex]A_{20} = B_{20} * (1 + 20\%)[/tex]
[tex]B_{10} = \frac{1}{2} * A_{10}[/tex]
[tex]B_{10} = \frac{1}{2} * 13439.16[/tex]
[tex]B_{10} = 6719.58[/tex]
[tex]A_{20} = B_{20} * (1 + 20\%)[/tex]
[tex]18061.11 = B_{20} * (1 + 20\%)[/tex]
[tex]18061.11 = B_{20} * (1 + 0.20)[/tex]
[tex]18061.11 = B_{20} * (1.20)[/tex]
Solve for B20
[tex]B_{20} = \frac{18061.11}{1.20}[/tex]
[tex]B_{20} = 15050.93[/tex]
[tex]B_{10} = 6719.58[/tex] and [tex]B_{20} = 15050.93[/tex] can be used to determine the function of city B
[tex]B_t = B_0 * (1 + r_B)^t[/tex]
For: [tex]B_{10} = 6719.58[/tex]
We have:
[tex]B_{10} = B_0 * (1 + r_B)^{10}[/tex]
[tex]B_0 * (1 + r_B)^{10} = 6719.58[/tex]
For: [tex]B_{20} = 15050.93[/tex]
We have:
[tex]B_{20} = B_0 * (1 + r_B)^{20}[/tex]
[tex]B_0 * (1 + r_B)^{20} = 15050.93[/tex]
Divide [tex]B_0 * (1 + r_B)^{20} = 15050.93[/tex] by [tex]B_0 * (1 + r_B)^{10} = 6719.58[/tex]
[tex]\frac{B_0 * (1 + r_B)^{20}}{B_0 * (1 + r_B)^{10}} = \frac{15050.93}{6719.58}[/tex]
[tex]\frac{(1 + r_B)^{20}}{(1 + r_B)^{10}} = 2.2399[/tex]
Apply law of indices
[tex](1 + r_B)^{20-10} = 2.2399[/tex]
[tex](1 + r_B)^{10} = 2.2399[/tex] --- (1)
Take 10th root of both sides
[tex]1 + r_B = \sqrt[10]{2.2399}[/tex]
[tex]1 + r_B = 1.08[/tex]
Subtract 1 from both sides
[tex]r_B = 0.08[/tex]
To calculate [tex]B_0[/tex], we have:
[tex]B_0 * (1 + r_B)^{10} = 6719.58[/tex]
Recall that: [tex](1 + r_B)^{10} = 2.2399[/tex]
So:
[tex]B_0 * 2.2399 = 6719.58[/tex]
[tex]B_0 = \frac{6719.58}{2.2399}[/tex]
[tex]B_0 = 3000[/tex]
Hence:
[tex]B_t = B_0 * (1 + r_B)^t[/tex]
[tex]B_t = 3000 * (1 + 0.08)^t[/tex]
[tex]B_t = 3000 * (1.08)^t[/tex]
The question requires that we solve for t when:
[tex]A_t = B_t[/tex]
Where:
[tex]A_t = A_0 * (1 + r_A)^t[/tex]
[tex]A_t = 10000 * (1 + 3\%)^t[/tex]
[tex]A_t = 10000 * (1 + 0.03)^t[/tex]
[tex]A_t = 10000 * (1.03)^t[/tex]
and
[tex]B_t = 3000 * (1.08)^t[/tex]
[tex]A_t = B_t[/tex] becomes
[tex]10000 * (1.03)^t = 3000 * (1.08)^t[/tex]
Divide both sides by 10000
[tex](1.03)^t = 0.3 * (1.08)^t[/tex]
Divide both sides by [tex](1.08)^t[/tex]
[tex](\frac{1.03}{1.08})^t = 0.3[/tex]
[tex](0.9537)^t = 0.3[/tex]
Take natural logarithm of both sides
[tex]\ln(0.9537)^t = \ln(0.3)[/tex]
Rewrite as:
[tex]t\cdot\ln(0.9537) = \ln(0.3)[/tex]
Solve for t
[tex]t = \frac{\ln(0.3)}{ln(0.9537)}[/tex]
[tex]t = 25.397[/tex]
Approximate
[tex]t = 25[/tex]