Answer :
Answer:
(-2, -4)
Step-by-step explanation:
y = f(x) = ax²+bx +c
given the vertex is (3, -4)
=> the symetry axis: x = 3
x = -b/2a = 3
so, -b = 6a => b = -6a
the function f(x) = x²-6x + 5
g(x) = f(x+5)
g(x) = (x+5)²-6(x+5)+5
g(x) = x²+10x+25-6x-30+5
g(x) = x²+4x
=> a=1, b=4
find the vertex of the function g :
the symetry axis: x= -4/2(1) => x = -2
y = g(-2) = (-2)²+4(-2)= 4-8 = -4
so, the vertex is (-2, -4)
Answer:
- (-2, -4)
Step-by-step explanation:
Vertex form of a quadratic function:
- f(x) = (x - h)² + k
We have (h, k) = (3, -4)
The function f(x) is:
- f(x) = (x - 3)² - 4
The function g(x) is:
g(x) = f(x + 5) =
(x + 5 - 3)² - 4 =
(x + 2)² - 4
Vertex of g(x) is:
- (-2, -4)