Answer :
Step-by-step explanation:
cotA + tanA
= cosA / sinA+ sinA/ cosA
= cos2A + sin2A / sinA* cosA
= 1 / sinA* cosA
=1/ sinA * 1/ cosA
= cosecA *secA
=secAcosecA
[tex]\frac{cos^2A + sin^2A}{sinAcosA}[/tex]Answer:
Step-by-step explanation:
cotA + tanA = secAcosecA
LHS=cotA + tanA
=[tex]\frac{cosA}{sinA}[/tex] + [tex]\frac{sinA}{cosA}[/tex]
take lcm of the denominator
=[tex]\frac{cosA*cosA + sinA*sinA}{sinAcosA}[/tex](COS^2A + sin^2A =1)
=[tex]\frac{1}{sinAcosA}[/tex]
=1/sinA * 1/cosA
=cosecA*secA
=secAcosecA
therefore LHS=RHS
hence proved.