Answer :
Answer:
Sine (30°) = cosine(90-30) = cos(60°) = 1/2
Step-by-step explanation:
The value of the [tex]cos 60^0[/tex] is [tex]\dfrac{1}{2}[/tex].
Recall the relationship between the sine and cosine
[tex]cos^2\theta= 1-sin^2\theta\\cos 2\theta = cos^2\theta - sin^2\theta[/tex]
How to find the cosine values?
Given the value of [tex]sin30^0[/tex] is [tex]\dfrac{1}{2}[/tex].
Use the relation between the sine and cosine as-
[tex]\cos^230^0=1-\sin^230^0\\=1-\dfrac{1}{4}\\=\dfrac{3}{4}\\[/tex]
Use another relation [tex]\cos 2\theta = \cos^2\theta -\sin^2\theta[/tex] as-
[tex]\cos(2\times 30^0)=\cos^2{30^0}-\sin^2{30^0}\\=\dfrac{3}{4}-\dfrac{1}{4}\\=\dfrac{1}{2}[/tex]
Hence, [tex]\cos 60^0[/tex] is value is [tex]\dfrac{1}{2}[/tex].
Learn more about trigonometric functions here-
https://brainly.com/question/6904750
#SPJ2