Answer:
[tex] {8x}^{3} + 27 \\ = {8x}^{3} + {3}^{3} \\ let : 8x \: be \: a \\ : 3 \: be \: b \\ = > {a}^{3} + {b}^{3} : \\ {(a + b)}^{3} = (a + b)( {a}^{2} + 2ab + {b}^{2} ) \\ {(a + b)}^{3} = ( {a}^{3} + 3{a}^{2} b + 3a {b}^{2} + {b}^{3} ) \\ ( {a}^{3} + {b}^{3} ) = {(a + b)}^{3} - 3ab(a + b) \\ \therefore( {8x}^{3} + 27) = {(8x + 3)}^{3} - 72(8x + 3)[/tex]