Answer :
Answer:
The correct answer is "[tex]4.991\times 10^{-45} \ kg.m^2[/tex]".
Explanation:
According to the question,
[tex]R_{C-Cl} = 177 \ pm[/tex]
or,
[tex]=1.77\times 10^{-10} \ m[/tex]
[tex]\alpha = 107^{\circ}[/tex]
[tex]m_{Cl}=34.97 \ m.u[/tex]
or,
[tex]=34.97\times 1.66\times 10^{-27}[/tex]
[tex]=5.807\times 10^{-26} \ kg[/tex]
The moment of inertia around the rotational axis will be:
⇒ [tex]I=3\times m_{Cl}\times (R_{C-Cl})^2 \ Sin^2 \alpha[/tex]
By putting the values, we get
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2 \ Sin^2 (107)[/tex]
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2\times 0.91452[/tex]
[tex]=4.991\times 10^{-45} \ kg.m^2[/tex]