Answer :
Step-by-step explanation:
Given :-
(β3-β2)/(β3+β2)
To find :-
Rationalised form = ?
Solution:-
Given that
(β3-β2)/(β3+β2)
The denominator = β3+β2
The Rationalising factor of β3+β2 is β3-β2
On Rationalising the denominator then
=> [(β3-β2)/(β3+β2)]Γ[(β3-β2)/(β3-β2)]
=> [(β3-β2)(β3-β2)]Γ[(β3+β2)(β3-β2)]
=> (β3-β2)Β²/[(β3+β2)(β3-β2)]
=> (β3-β2)Β²/[(β3)Β²-(β2)Β²]
Since (a+b)(a-b) = aΒ²-bΒ²
Where , a = β3 and b = β2
=> (β3-β2)Β²/(3-2)
=> (β3-β2)Β²/1
=> (β3-β2)Β²
=> (β3)Β²-2(β3)(β2)+(β2)Β²
Since , (a-b)Β² = aΒ²-2ab+bΒ²
Where , a = β3 and b = β2
=> 3-2β6+2
=> 5-2β6
Hence, the denominator is rationalised.
Answer:
Rationalised form of (β3-β2)/(β3+β2) is 5 - 2β6.
Used formulae:-
- (a+b)(a-b) = aΒ²-bΒ²
- (a-b)Β² = aΒ²-2ab+bΒ²
- The Rationalising factor of β3+β2 is β3-β2