ahhhh help everyone help me solve this ....

Answer:
[tex]y = \frac{18 {w}^{2} {x}^{2} {z}^{2} }{25} [/tex]
Step-by-step explanation:
[tex] \frac{3wx}{ \sqrt{2y} } = \frac{5}{2z} \\ \\ \sqrt{2y} \times 5 = 3wx \times 2z \\ \\ \sqrt{2y} \times 5 = 6wxz \\ \\ \sqrt{2y} = \frac{6wxz}{5} \\ \\ {( \sqrt{2y} })^{2} = {( \frac{6wxz}{5} })^{2} \\ \\ 2y = \frac{36 {w}^{2} {x}^{2} {z}^{2} }{25} \\ \\ \\ y = \frac{36 {w}^{2} {x}^{2} {z}^{2} }{25} \div 2 \\ \\ \\ y = \frac{36 {w}^{2} {x}^{2} {z}^{2} }{25} \times \frac{1}{2} \\ \\ \\ y = \frac{36 {w}^{2} {x}^{2} {z}^{2} }{50} \\ \\ \\ y = \frac{18 {w}^{2} {x}^{2} {z}^{2} }{25} [/tex]
I hope I helped you^_^