Answer :
The three methods used to find the real roots of the function are,
graphically, the quadratic formula, and by iteration.
The correct vales are;
(a) Graphically, the roots obtained are; x ≈ -1.629, and 5.629
(b) Using the quadratic formula, the real roots of the given function are; x ≈ -1.62589, x ≈ 5.62859
(c) Using three iterations, we have; the bracket is [tex]x_l[/tex] = 5.625, and [tex]x_u[/tex] = 6.25
Reasons:
The given function is presented as follows;
f(x) = -0.6·x² + 2.4·x + 5.5
(a) The graph of the function is plotted on MS Excel, with increments in the
x-values of 0.01, to obtain the approximation of the x-intercepts which are
the real roots as follows;
[tex]\begin{array}{|c|cc|}x&&f(x)\\-1.63&&-0.00614\\-1.62&&0.03736\\5.62&&0.03736 \\5.63&&-0.00614\end{array}\right][/tex]
Checking for the approximation of x-value of the intercept, we have;
[tex]x = -1.63 + \dfrac{0 - (-0.00614)}{0.0376 - (-0.00614)} \times (-1.62-(-1.63)) \approx -1.629[/tex]
Therefore, based on the similarity of the values at the intercepts, the x-
values (real roots of the function) at the x-intercepts (y = 0) are;
x ≈ -1.629, and 5.629
(b) The real roots of the quadratic equation are found using the quadratic
formula as follows;
The quadratic formula for finding the roots of the quadratic equation
presented in the form f(x) = a·x² + b·x + c, is given as follows;
[tex]x = \mathbf{ \dfrac{-b\pm \sqrt{b^{2}-4\cdot a\cdot c}}{2\cdot a}}[/tex]
Comparison to the given function, f(x) = -0.6·x² + 2.4·x + 5.5, gives;
a = -0.6, b = 2.4, and c = 5.5
Therefore, we get;
[tex]x = \dfrac{-2.4\pm \sqrt{2.4^{2}-4\times (-0.6)\times 5.5}}{2\times (-0.6)} = \dfrac{-2.4\pm\sqrt{18.96} }{-1.2} = \dfrac{12 \pm\sqrt{474} }{6}[/tex]
Which gives
The real roots are; x ≈ -1.62859, and x ≈ 5.62859
(c) The initial guesses are;
[tex]x_l[/tex] = 5, and [tex]x_u[/tex] = 10
The first iteration is therefore;
[tex]x_r = \dfrac{5 + 10}{2} = 7.5[/tex]
[tex]Estimated \ error , \ \epsilon _a = \left|\dfrac{10- 5}{10 + 5} \right | \times 100\% = 33.33\%[/tex]
[tex]True \ error, \ \epsilon _t = \left|\dfrac{5.62859 - 7.5}{5.62859} \right | \times 100\% = 33.25\%[/tex]
f(5) × f(7.5) = 2.5 × (-10.25) = -25.625
The bracket is therefore; [tex]x_l[/tex] = 5, and [tex]x_u[/tex] = 7.5
Second iteration:
[tex]x_r = \dfrac{5 + 7.5}{2} = 6.25[/tex]
[tex]Estimated \ error , \ \epsilon _a = \left|\dfrac{7.5- 5}{7.5+ 5} \right | \times 100\% = 20\%[/tex]
[tex]True \ error, \ \epsilon _t = \mathbf{\left|\dfrac{5.62859 - 6.25}{5.62859} \right | \times 100\%} \approx 11.04\%[/tex]
f(5) × f(6.25) = 2.5 × (-2.9375) = -7.34375
The bracket is therefore; [tex]x_l[/tex] = 5, and [tex]x_u[/tex] = 6.25
Third iteration
[tex]x_r = \dfrac{5 + 6.25}{2} = 5.625[/tex]
[tex]Estimated \ error , \ \epsilon _a = \left|\dfrac{5.625- 5}{5.625+ 5} \right | \times 100\% = 5.88\%[/tex]
[tex]True \ error, \ \epsilon _t = \mathbf{\left|\dfrac{5.62859 - 5.625}{5.62859} \right | \times 100\%} \approx 6.378 \times 10^{-2}\%[/tex]
f(5) × f(5.625) = 2.5 × (0.015625) = 0.015625
Therefore, the bracket is [tex]x_l[/tex] = 5.625, and [tex]x_u[/tex] = 6.25
Learn more here:
https://brainly.com/question/14950153
