Answer :
Step-by-step explanation:
[tex]\begin{gathered}\frak \red{Given}\:\begin{cases} \:\quad\sf Acceleration \:of \ \: a\:body\:,\:a\:=\:\pmb{\frak{5\:m/s^2\:}}\:\\ \:\quad\sf Force \:Exerted\:on\:a\:body\:,\:F\:=\:\pmb{\frak{\:4\times 10^5\: dynes\:}}\:\end{cases}\\\\\end{gathered}[/tex]
Need To Find :
- The mass of a body ?
β β β β β ββββββββββββββββββββββββββββββββ
β β β β β ββββββββββββββββββββββββββββββββ
We're Provided with the , Acceleration (a) , and Force Exerted (F) on a body and , we'll find Mass (m) of the object using the relation
between Force , Mass & Acceleration and, that is :
[tex]\underline {\pmb{\sf \: F\:=\:m\:\times \:a \:}}[/tex]
[tex]\\ \twoheadrightarrow \sf F \:=\:m\:\times \:a[/tex]
[tex]: \rightarrow \sf 4 \:\times 10^5 \:=\:m\:\times \:5\:[/tex]
[tex] \\ \\ \\ \\\twoheadrightarrow \sf 4 \:=\:m\:\times \:5\:\:\Bigg\lgroup \:1 \:N\:=\:1\:\times 10^5\:dynes\:\Bigg\rgroup\\[/tex]
[tex]\\ \twoheadrightarrow \sf 4 \: \:=\:m\:\times \:5\:\\\\\\[/tex]
[tex] \twoheadrightarrow \sf 5m\:=\:4\:\\[/tex]
[tex]\twoheadrightarrow \sf m \cancel{\dfrac{4}{5}}\\\\[/tex]
[tex]\ \twoheadrightarrow \pmb {\underline {\boxed {\purple {\:\frak{ \:m\:\:=\:0.8\:kg\:}}}}}\:\bigstar \: \\[/tex]
[tex]\begin{gathered}\therefore \:\underline {\sf \: Hence,\:Mass\:of\:a\:body\:is\:\pmb{\sf 0.8\:kg\:}\:.}\:\\\\\end{gathered}[/tex]